Synthesis, structure, and reactivity of (tropon-2-ylimino)arsorane and in situ generation of its stiborane and bismuthorane analogues: reactions with heterocumulenes and an activated acetylene giving heteroazulenes

Makoto Nitta,* Yuhki Mitsumoto and Hiroyuki Yamamoto
Department of Chemistry, School of Science and Engineering, Materials Research Laboratory for Bioscience and Photonics, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan

Received (in Cambridge, UK) 5th April 2001, Accepted 20th June 2001
First published as an Advance Article on the web 26th July 2001

Abstract

(Tropon-2-ylimino)pnictoranes of the general structure $\mathrm{RN}=\mathrm{MPh}_{3}(\mathrm{R}=$ tropon-2-yl; $\mathrm{M}=\mathrm{As}, \mathrm{Sb}$, and Bi$) 4-6$ have been prepared for the first time by the reaction of 2 -aminotropone with $\mathrm{Ph}_{3} \mathrm{MX}_{2}(\mathrm{M}=\mathrm{As}, \mathrm{Sb}$, and Bi$)$ in the presence of a base. The arsorane derivative $(M=A s) 4$ is isolated as a stable crystalline compound, while the stiborane $(\mathrm{M}=\mathrm{Sb})$ and the bismuthorane $(\mathrm{M}=\mathrm{Bi})$ derivatives 5 and $\mathbf{6}$ are not isolated and are prepared in situ due to their moisture sensitivity. The X-ray crystal analysis revealed that compound $\mathbf{4}$ exhibits two different conformations in the solid state, and that the As-O bond distances ($2.33 \AA$) lie below the sum of the van der Waals radii $(3.37 \AA)$, and thus, there is appreciable bonding interaction between the arsine and the oxygen atoms. With a view to constructing a series of cyclohepta-annulated heterocycles and in order to gain a better understanding of a series of iminopnictoranes, compounds $4 \mathbf{6}$ were allowed to react with heterocumulenes such as carbon disulfide, phenyl isothiocyanate, phenyl isocyanate, and diphenylcarbodiimide, in an aza-Wittig/electrocyclization or a formal [8 + 2] type cycloaddition eliminating triphenylpnictorane oxide to give 2 H -cycloheptaoxazol-2-one, its thione, and imine derivatives. On the other hand, the reaction of compounds 4 and 5 with dimethyl acetylenedicarboxylate (DMAD) gives postulated dimethyl cyclohepta[b]pyrrole-2,3-dicarboxylate, which subsequently reacts with DMAD to result in the formation of tetramethyl $2 H$-cyclohepta $[g h]$ pyrrolizine-1,2,4,5-tetracarboxylate, while the reaction of 6 gives only intractable tarry materials. The reactivity of the compounds $\mathbf{4 - 6}$, which contain a formal $\mathrm{N}=\mathrm{M}$ $(\mathrm{M}=\mathrm{As}, \mathrm{Sb}$, and Bi$)$ double bond, has been clarified to be in the order of $\mathbf{6}(\mathrm{M}=\mathrm{Bi})>\mathbf{5}(\mathrm{M}=\mathrm{Sb})>\mathbf{4}$ $(M=A s)>[$ the corresponding iminophosphorane derivative $3(M=P)]$.

Introduction

Iminopnictoranes 1a-d are a class of compounds bearing a formal double bond between the nitrogen and the pnictogen elements (Fig. 1). They have been receiving considerable attention in view of their chemical analogy to pnictogen ylides as well as their potential utility in organic synthesis. ${ }^{1-3}$ The properties of iminopnictoranes are highly dependent on the identity of the pnictogen. The dipolar and nucleophilic character of the iminopnictoranes appears to increase, and their stability decreases, when the pnictogen stands lower in the Periodic Table. The difference between iminophosphoranes and other iminopnictoranes is commonly ascribed to the less efficient $\mathrm{p} \pi-\mathrm{d} \pi$ overlap between the N-p orbitals and the larger and more diffuse $4 \mathrm{~d}, 5 \mathrm{~d}$, and 6 d orbitals of arsine, stibine, and bismuth elements, and the decreased electrostatic interaction across the imide bonds, but it is probable that these are not the only factors involved. ${ }^{2}$ Iminoarsoranes ($\mathrm{M}=\mathrm{As}$) appear to be more resistant to hydrolysis than the corresponding iminostiboranes $(\mathrm{M}=\mathrm{Sb})$ and iminobismuthoranes $(\mathrm{M}=\mathrm{Bi})$ for even the simple example $(\mathrm{R}=\mathrm{H}),{ }^{2,4}$ and can be handled in air, although they are less stable than their phosphorane analogues. All known iminopnictoranes $\left(M=S b,{ }^{5,6} \mathrm{Bi}^{5-9}\right)$ are stabilized by highly electronegative organic sulfonyl ${ }^{5,8}$ and trifluoroacetyl ${ }^{10}$ groups on the nitrogen atom, but no iminopnictoranes $(M=S b$, Bi) bearing a functional group other than organic sulfonyl and trifluoroacetyl ${ }^{10}$ groups have been reported to date. On the other hand, the utility of (vinylimino)phosphoranes 2 as

1a: $M=P$
b: $M=A s$
c: $M=S b$
d: $M=B i$

3

4: $M=A s$
5: $M=S b$
6: $M=B i$

Fig. 1
useful building blocks for the synthesis of azaheterocycles has been demonstrated convincingly. ${ }^{11-15}$ (Vinylimino) phosphoranes undergo a single-step annulation with compounds containing two electrophilic centers such as α-bromo ketones, α, β-unsaturated ketones and aldehydes, and related Michael acceptors to give a variety of nitrogen heterocycles. ${ }^{13}$ In relation to these studies, we have been interested recently in exploiting
the synthesis, structure, and reactivities afforded by the (tropon2 -ylimino)phosphorane \dagger 3. ${ }^{16}$ The X-ray crystallographic analysis of $\mathbf{3}$ has revealed that the P---O distance is significantly longer than a covalent bond, but the oxygen atom in $\mathbf{3}$ intramolecularly coordinates to the phosphorus atom. It is also clarified that the reaction of $\mathbf{3}$ with heterocumulenes provides a new methodology for constructing new cyclohepta-annulated five-membered heterocycles (heteroazulenes). In order to gain a better understanding of this class of iminopnictoranes, we have embarked on the preparation of a series of iminopnictoranes 4-6, which could be stabilized by coordination of the oxygen atom to the pnictogenes like the phosphorus analogue 3. We report herein the first synthesis, structure, and reactivity of the (tropon-2-ylimino)arsorane $\mathbf{4}$ as well as in situ generation of the (tropon-2-ylimino)stiborane 5 and bismuthorane $\mathbf{6}$ and their reaction with heterocumulenes and dimethyl acetylenedicarboxylate (DMAD).

Results and discussion

In our previous paper, we reported a Kirsanov reaction, ${ }^{17}$ treating 2-aminotropone 7 with $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ in benzene to yield (tropon-2-ylimino)phosphorane in good yield (Scheme 1). ${ }^{16}$

Scheme 1 Reagents and conditions: i, $\mathrm{Ph}_{3} \mathrm{AsBr}_{2}, \mathrm{NEt}_{3}, \mathrm{PhH}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$, rt; ii, $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{3} \mathrm{O}^{+}$; iii, $\mathrm{Ph}_{3} \mathrm{SbCl}_{2}, \mathrm{Bu}^{\boldsymbol{r}} \mathrm{OK}, \mathrm{PhH}$ or $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}$; iv $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}$, $\mathrm{Bu}^{t} \mathrm{OK}, \mathrm{PhH}$ or $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt} ; \mathrm{v}, \mathrm{H}_{2} \mathrm{O}$.

This imination procedure is known to be useful also for the preparation of (tropon-2-ylimino)pnictoranes 4, 5, and $\mathbf{6}$. 2-Aminotropone 7 reacted with $\mathrm{Ph}_{3} \mathrm{AsBr}_{2}{ }^{18}$ in the presence of NEt_{3} at room temperature to give (tropon-2-ylimino)arsorane 4 in good isolated yield. The structure of compound 4 was confirmed from an inspection of the spectroscopic data including ${ }^{1} \mathrm{H}$ NMR spectra (Table 1), IR, UV-visible, and mass spectral data as well as elemental analysis, and finally X-ray crystal structure analysis.

The X-ray crystal analysis revealed compound 4 exhibits two different conformations in the solid state. Two ORTEP drawings of the conformers I and II are shown in Fig. 2, where the arsine atoms of conformers I and II lie between the center of a trigonal bipyramidal configuration $\left[(\mathrm{O} 1\right.$ and C 11$)$ and $\left(\mathrm{O} 1^{\prime}\right.$ and
\dagger The non-systematic term 'tropon-2-yl' will be used in both this section and the Results and discussion; systematic nomenclature (7-oxo cyclohepta-1,3,5-trienyl) will be used in the Experimental section.
$\mathrm{C} 11^{\prime}$) in apical positions, ($\mathrm{N} 1, \mathrm{C} 21$, and C 31) and ($\mathrm{N} 1^{\prime}, \mathrm{C} 21^{\prime}$, and C31') in equatorial positions, respectively] and the center of a tetrahedral configuration, with the bond angles shown in Fig. 3. On the other hand, the intramolecular As1---O1 and As1'---O1' distances ($2.33 \AA$ for \mathbf{I} and II) are longer than a covalent bond (1.74-1.90 \AA) in spirobi($1,3,2 \lambda^{5}$-dioxarsolane) derivative, ${ }^{19}$ and are significantly shorter than the sum of the van der Waals radii $(3.37 \AA) .{ }^{20}$ Thus, evidently, the oxygen atom of compound 4 intramolecularly coordinates to the arsine atom. The As1-N1 (1.81 \AA for I) and As1'-N1' $(1.82 \AA$ for II) bonds are slightly longer than a standard formal As=N bond $(1.71-1.78 \AA) .{ }^{21}$ This is also in accord with the observed relatively short $\mathrm{N} 1-\mathrm{C} 2(1.32 \AA)$ and $\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}(1.28 \AA)$ bond lengths for \mathbf{I} and II, as compared with typical $\mathrm{N}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond length $(1.38 \AA) .{ }^{22}$ Thus, the $\mathrm{As} 1=\mathrm{N} 1$ and $\mathrm{As1}^{\prime}=\mathrm{N} 1^{\prime}$ bonds possess little double-bond character, and the canonical structures 4A and 4B best represent the actual bonding in 4 . The tropone moiety in compound $\mathbf{4}$ is nearly planar, and bond length alternation is clearly seen (1.37-1.46 Å for $\mathbf{I} ; 1.37-1.47 \AA$ for II); the result is also in agreement with the evidence obtained from the ${ }^{1} \mathrm{H}$ NMR spectra (Table 1). The carbonyl absorption appearing at $v_{\max } 1590 \mathrm{~cm}^{-1}$ in the IR spectrum is slightly lower than those found in tropone $\left(v_{\max } 1594 \mathrm{~cm}^{-1}\right)^{23}$ and compound $3\left(v_{\max } 1596 \mathrm{~cm}^{-1}\right),{ }^{16}$ and the $\mathrm{C}=\mathrm{O}$ bond lengths (1.27 \AA for I and $1.24 \AA$ for II) do not differ appreciably from those of tropone and compound $3(1.26 \AA) .^{16,24}$ Compound $\mathbf{4}$ is stable at room temperature for a month in dry nitrogen atmosphere, and it is not stable over silica gel. On treatment of 4 with water or acid, it underwent hydrolysis to afford 2-aminotropone 7 and triphenylarsine oxide (Scheme 1).

On the other hand, the reaction of 7 with $\mathrm{Ph}_{3} \mathrm{SbCl}_{2}{ }^{25}$ and $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}{ }^{26}$ in the presence of $\mathrm{Bu}^{t} \mathrm{OK}$ in benzene proceeded in $5-10 \mathrm{~min}$, but the usual work-up did not afford the stiborane 5 and bismuthorane 6, respectively, and only the starting material 7 was isolated. However, in situ generation of 5 and 6 in hexadeuteriobenzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ was carried out, and the ${ }^{1} \mathrm{H}$ NMR spectra confirmed the formation of 5 and 6 (Scheme 1). The ${ }^{1} \mathrm{H}$ NMR spectral data of 5 and 6 as well as of isolated 4 and in situ-generated 4 are summarized in Table 1. The ${ }^{1} \mathrm{H}$ NMR spectral data of $4-6$ resemble each other and clearly suggest the clean generation of $\mathbf{4}, \mathbf{5}$, and $\mathbf{6}$. Compounds 5 and $\mathbf{6}$ are actually clarified by ${ }^{1} \mathrm{H}$ NMR spectral studies as being moisture sensitive. The addition of a trace amount of water caused decomposition of 5 and 6 leading to 2-aminotropone 7 (Scheme 1). Furthermore, compounds 4 and 5 are stable under heating in benzene ($c f$. Table 2), while compound $\mathbf{6}$ in benzene seems to eliminate the tropon-2-ylnitrene moiety to give $\mathrm{Ph}_{3} \mathrm{Bi}$ in 84% yield after heating under reflux for 1 h (see Experimental section). ${ }^{10}$ Thus, the moisture sensitivity of (tropon-2-ylimino)iminopnictoranes $4-6$ seems to increase and the thermal stability decreases when the pnictogen element stands lower in the Periodic Table.

Previously, the iminophosphorane $\mathbf{3}$ was revealed to react with heterocumulenes to afford cyclohepta-annulated heterocycles (Table 2, Entries 1, 5, 15, and 20). ${ }^{16}$ In relation to that study and to clarify the reactivities, the reactions of pnictoranes $4-6$ with heterocumulenes $8 \mathbf{8}-\mathbf{d}$ were investigated. The reaction of compounds 4 and in situ-generated 5 and 6 with carbon disulfide 8a was accomplished to give 2 H -cycloheptaoxazole-2-thione 11 (Scheme 2). Similarly, the reactions of compounds 4 and in situ-generated $4-6$ with phenyl isothiocyanate $\mathbf{8 b}$ were also carried out to give N -phenyl- 2 H -cycloheptaoxazole-2-imine $\mathbf{1 2}$, which is a mixture of (\boldsymbol{Z}) - and (\boldsymbol{E})-isomers in the ratio $7: 3 .{ }^{16}$ The reaction conditions and the yields of the products are summarized in Table 2 (Entries 2-4 and 6-9). The reaction of isolated $\mathbf{4}$ with $\mathbf{8 b}$ gave a good yield of 12 , while that of in situ-generated $\mathbf{4}$ with $\mathbf{8 b}$ gave a modest yield of $\mathbf{1 2}$ (Table 2, Entries 6 and 7). The structures of compounds 11 and $\mathbf{1 2}$ were confirmed on the basis of a comparison of their physical data with those of the authentic specimens. ${ }^{16}$ The iminopnictoranes

Table $1{ }^{1} \mathrm{H}$ NMR spectral data (500 MHz) of pnictoranes 4-6

| Compd | | H 3 | | H 4 | | H 5 | | H 6 | | H 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Remaining signals

${ }^{a}$ Isolated compound in $\mathrm{CDCl}_{3} .{ }^{b}$ Isolated compound in $\mathrm{C}_{6} \mathrm{D}_{6} .{ }^{c}$ Compound prepared in situ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Fig. 2 ORTEP drawing of conformations I and II for $\mathbf{4}$ with thermal ellipsoid plot (40% probability) (with crystallographic numbering). Selected bond lengths (\AA). For I: As1-O1 2.326, As1-C11 1.964(5), As1-C21 1.957(5), As1-C31 1.940(5), As1-N1 1.814(5), O1-C1 1.274(7), N1-C2 1.315(7), C1-C2 1.462(8). C2-C3 1.409(8), C3-C4 1.369(9), C4-C5 1.435(10), C5-C6 1.378(11), C6-C7 1.395(9), C7-C1 1.370(8). For II: As1'-O1' 2.332, $\mathrm{As} 1^{\prime}-\mathrm{C} 11^{\prime} 1.976(5), \mathrm{As} 1^{\prime}-\mathrm{C} 21^{\prime} 1.948(5), \mathrm{As} 1^{\prime}-\mathrm{C} 31^{\prime} 1.961(5), \mathrm{As} 1^{\prime}-\mathrm{N} 1^{\prime} 1.820(5), \mathrm{O}^{\prime}{ }^{\prime}-\mathrm{C} 1^{\prime} 1.237(7), \mathrm{N} 1^{\prime}-\mathrm{C}^{\prime}{ }^{\prime} 1.284(7), \mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime} 1.471(8), \mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$ $1.405(8), \mathrm{C}^{\prime}-\mathrm{C} 4^{\prime} 1.420(10), \mathrm{C}^{\prime}-\mathrm{C}^{\prime} 1.370(11), \mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime} 1.419(9), \mathrm{C} 7^{\prime}-\mathrm{C}^{\prime} 1.391(8)$.

1

II

Fig. 3 Bond angles around nearly the trigonal bipyramidal structure of conformations I and II for 4.

46 undergo an aza-Wittig-type reaction to eliminate the sulfur atom of $\mathbf{8 a}, \mathbf{b}$ to lead to the intermediates $\mathbf{9}$ and $\mathbf{1 0}$, which then undergo 10π-electron cyclization to give $\mathbf{1 1}$ and $\mathbf{1 2}$, respectively. ${ }^{16}$ This is similar to the reaction of $\mathbf{3}$ with carbon disulfide 8a and phenyl isothiocyanate $\mathbf{8 b}$, respectively (Table 2, Entries 1 and 5). Compounds $\mathbf{3}$ and $\mathbf{4}$ undergo the reaction at elevated

temperature, while reactions of $\mathbf{5}$ and $\mathbf{6}$ proceeded smoothly at lower temperature (Table 2). Thus, it is clear that the reactivity of $\mathbf{3 - 6}$ is in the order $\mathbf{3}<\mathbf{4}<\mathbf{5}<\mathbf{6}$. The reactivity due to the dipolar and nucleophilic character of the iminopnictoranes 3-6 appears to increase when the pnictogen stands lower in the Periodic Table.

Since the reaction of the iminophosphorane 3 (Fig. 1) with diphenylcarbodiimide $8 \mathbf{c}$ has not been investigated, ${ }^{16}$ the iminopnictoranes 3-6 were allowed to react with diphenylcarbo-

Table 2 Results for the reactions of compounds $\mathbf{3}, \mathbf{4}, 5$ and $\mathbf{6}$ with heterocumulenes 8a-d and DMAD 17

Entry	Compd.	Cumulene or 17	Ratio of 8a-d or 17: 3-6 ${ }^{\text {a }}$	Reaction conditions		Product (Yield/\%)
				Solvent ${ }^{\text {b }}$	Time t / h	
$1{ }^{\text {c }}$	3	8a	excess	$\mathrm{CS}_{2}{ }^{\text {d }}$	1 week	11 (82)
2	4^{e}	8a	excess	$\mathrm{CS}_{2}{ }^{\text {d }}$	2 days	11 (92)
3	5	8a	excess	$\mathrm{PhH}-\mathrm{CS}_{2}$	30	11 (82)
4	6	8a	excess	$\mathrm{PhH}-\mathrm{CS}_{2}{ }^{f}$	4	11 (21)
$5{ }^{\text {c }}$	3	8b	2	PhMe	9	12 (72), 16 (7)
6	$4{ }^{e}$	8b	10	PhH	5	12 (81)
7	4	8b	10	PhH	1	12 (42)
8	5	8b	10	PhH	4.5	12 (72)
9	6	8b	10	PhH^{f}	3	12 (26)
10	3	8c	5	Xylenes	7	12 (63), 14 (11)
11	$4{ }^{e}$	8c	5	PhH	10	12 (20), 14 (57)
12	4	8c	5	PhH	4.5	12 (3), 14 (42)
13	5	8c	5	PhH	1	14 (63)
14	6	8c	5	PhH^{f}	10 min	14 (54)
15^{c}	3	8d	2	PhH	1	12 (26), 16 (74)
16	4	8d	10	PhH	1	16 (42)
17	5	8d	10	PhH	30 min	16 (53)
18	6	8d	10	PhH^{f}	5 min	16 (34)
19	$4{ }^{e}$	8d	10	Xylenes	25	12 (15), 14 (34)
20^{c}	3	17	3	PhBr	4.5	23 (43)
21	$4{ }^{e}$	17	5	PhBr	20	23 (60)
22	5	17	10	PhBr	1	23 (10)

${ }^{a}$ In the case of in situ generation of 4-6, the amounts correspond to the amount of 2-aminotropone 7 used. ${ }^{b}$ Unless otherwise specified, the reaction was carried out under reflux. ${ }^{c}$ Ref. $16 .{ }^{d}$ Reaction was carried out in an autoclave at $100^{\circ} \mathrm{C}$. ${ }^{e}$ Isolated compound. ${ }^{f}$ Stirred at room temperature.
diimide 8c, which was prepared in situ by the reaction of phenyl isocyanate $\mathbf{8 d}$ in the presence of a catalytic amount of Ph_{3} AsO. ${ }^{27}$ The reaction conditions and the yields of the products are summarized in Table 2 (Entries 10-14). The reactions of 3 and $\mathbf{4}$ with 8 c proceeded at relatively high temperature to give products 12 and 14 (Scheme 3; Table 2, Entries 10-12). On the

14
Scheme 3 Conditions: i, heat.
other hand, the reactions of $\mathbf{5}$ and $\mathbf{6}$ with 8 c proceeded selectively under mild conditions to give the single product 14 (Entries 13 and 14). The structure of new compound 14 was assigned on the basis of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, IR, UVvisible spectra, mass spectral data, and analytical data, as well as a comparison of its physical data with those of related derivatives. ${ }^{28}$ Furthermore, it was found that compound $\mathbf{1 4}$ is not a mixture of (\boldsymbol{E}) - and (\boldsymbol{Z})-isomers. Although no evidence for the stereochemical situation for $\mathbf{1 4}$ was obtained, we prefer the (\boldsymbol{Z})-isomer for $\mathbf{1 4}$, because of the steric hindrance of the phenyl groups. The reactions of $\mathbf{3}$ and 4 with 8 c are considered
to proceed via an aza-Wittig reaction giving the intermediate 10 and via a formal [$8+2]$-type electrocyclization to give the intermediate 13, while those of 5 and $\mathbf{6}$ with 8c proceed via the intermediate 13. The intermediates $\mathbf{1 0}$ and $\mathbf{1 3}$ then collapse to result in the formation of $\mathbf{1 2}$ and $\mathbf{1 4}$, respectively. The formation of $\mathbf{1 3}$ is suggestive of the $\mathrm{M}--\mathrm{O}(\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$ coordinating interaction in compounds $\mathbf{3 - 6}$, and the interaction may appear to be larger when the pnictogen atom is lower in the Periodic Table.

On the other hand, the reactions of $\mathbf{4} \mathbf{6}$ prepared in situ with phenyl isocyanate $\mathbf{8 d}$ afforded 2 H -cycloheptaoxazol-2-one $\mathbf{1 6}$, which probably arises from an aza-Wittig-type reaction giving the intermediate 15, in modest yields (Scheme 4, Table 2, Entries

Scheme 4 Conditions: i, heat.
16-18). In these cases, the reactions of $\mathbf{5}$ and $\mathbf{6}$ seem to proceed quickly or under mild conditions as compared with that of 4 . In the reaction of isolated $\mathbf{4}$ with $\mathbf{8 d}$ at elevated temperature of refluxing xylenes, products $\mathbf{1 2}$ and 14, instead of 16, were
isolated (Table 2, Entry 19). This process is similar to the reaction of 4 with 8c (Table 2, Entries 11 and 12). $\mathrm{Ph}_{3} \mathrm{AsNPh}$ is generated in the reaction of $\mathbf{4}$ with $\mathbf{8 d}$ giving the intermediate $\mathbf{1 5}$, which probably reacts with excess of $\mathbf{8 d}$ to generate carbodiimide 8c and $\mathrm{Ph}_{3} \mathrm{AsO}$. The latter compound further reacts with $\mathbf{8 d}$ to generate $\mathrm{Ph}_{3} \mathrm{AsNPh}$, and thus, $\mathbf{8 c}$ is generated in a catalytic process. ${ }^{27}$ The independent reaction of 16 with $\mathrm{Ph}_{3} \mathrm{AsO}$ in refluxing xylenes gives compound 4, which is detected by its ${ }^{1} \mathrm{H}$ NMR spectrum. Thus, compound $\mathbf{1 6}$, which is generated by the reaction of isolated $\mathbf{4}$ with $\mathbf{8 d}$ at first, collapses to give $\mathbf{4}$, which reacts with 8 8c to result in the formation of $\mathbf{1 2}$ and $\mathbf{1 4}$ (Scheme 4).

Finally, as in the case of the reaction of the phosphorane 3, the isolated $\mathbf{4}$ and in situ-prepared 5 reacted with DMAD 17 to give tetramethyl 2 H -cyclohepta[gh]pyrrolizine-1,2,4,5-tetracarboxylate 23 (Scheme 5; Table 2, Entries 21 and 22). The reac-

aza-Wittig-type reaction to result in the formation of $\mathbf{2 0}$. Reactions similar to the formation of $\mathbf{2 1}$ have been shown in the reaction of simple iminophosphoranes, ${ }^{30}$ iminoarsoranes, ${ }^{2}$ and iminostiboranes ${ }^{31}$ with DMAD. 1-Azaazulene has been shown to react with DMAD to give an intermediate such as $\mathbf{2 2}$, ${ }^{32}$ in which hydrogen migration results in the formation of the product 23.

In conclusion, we have demonstrated the synthesis of a series of (tropon-2-ylimino)pnictoranes $\mathbf{4 - 6}$ and their reactions with heterocumulenes and an activated acetylene to provide a variety of cyclohepta-annulated five-membered heterocycles (heteroazulenes). The arsorane $\mathbf{4}$ was isolated as a stable crystalline compound and clarified by X-ray structure analysis to be stabilized by not only the electron-withdrawing tropone but also by coordination of the carbonyl oxygen to the arsine element. The stiborane and bismuthorane analogues 5 and $\mathbf{6}$ prepared in situ seemed also to be stabilized by a similar coordination as in the case of $\mathbf{4}$, as demonstrated through their reaction with diphenylcarbodiimide 8c. Through the reactions of $4 \mathbf{6}$ and the phosphorane $\mathbf{3}$ in part with heterocumulenes, the dipolar and nucleophilic character of a series of pnictoranes 36 appears to increase and their stability decreases when the pnictogen stands lower in the Periodic Table. Further studies concerning the synthesis of pnictoranes and their synthetic applicability are underway.

Experimental

IR spectra were recorded on a Horiba FT-710 spectrometer. UV-visible spectra were recorded on a Shimadzu UV-3101PC spectrometer. Mass spectra and high-resolution mass spectra (FAB) were run on JEOL JMS-AUTOMASS150 and JMSSX102A spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-LA500 spectrometer using CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvents, and the chemical shifts are given relative to internal or external SiMe_{4} standard; J-values are given in Hz . Compounds $\mathrm{Ph}_{3} \mathrm{AsBr}_{2},{ }^{18} \mathrm{Ph}_{3} \mathrm{SbCl}_{2}$, ${ }^{25}$ and $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}{ }^{26}$ were prepared according to the procedure reported in the literature. Mps were recorded on a Yamato MP-21 apparatus and are uncorrected. All the reactions except hydrolysis were carried out under anhydrous conditions and dry nitrogen atmosphere.

Preparation of (7-oxocyclohepta-1,3,5-trienylimino)triphenylarsorane 4

To a stirred solution of $\mathrm{Ph}_{3} \mathrm{As}(919 \mathrm{mg}, 3.0 \mathrm{mmol})$ in benzene $\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of bromine $(479 \mathrm{mg}, 3.0 \mathrm{mmol})$ in benzene ($2 \mathrm{~cm}^{3}$) dropwise at rt , and the mixture was stirred for another 30 min . To this mixture was added a solution of 2-aminotropone $7(363 \mathrm{mg}, 3.0 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(627 \mathrm{mg}, 6.2$ $\mathrm{mmol})$ in benzene ($2 \mathrm{~cm}^{3}$), and the mixture was stirred for 16 h at rt . The reaction mixture was then filtered through Celite and the filtrate was concentrated. The residue was washed with diethyl ether under dry nitrogen atmosphere to give $4(1.15 \mathrm{~g}$, 90%) as yellow prisms; mp $154-158{ }^{\circ} \mathrm{C}$ (decomp. from AcOEt); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 119.0(\mathrm{C} 7), 121.7(\mathrm{C} 5), 123.2(\mathrm{C} 3), 128.7(\mathrm{Ph}), 130.2$ (Ph), 131.7 (Ph), 136.3 (C4), 138.8 (Ph), 170.1 (C2), 173.6 (C1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1590,1498,1424,1400,1354,1086 ; \lambda_{\text {max }}$ $(\mathrm{MeCN}) / \mathrm{nm}\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 252$ (4.48), 364 (4.11), 397sh (3.64), 421sh (3.68), 444 (3.86) (Found: $\mathrm{M}^{+}+1$, 426.0861; C, 70.4; H, 4.6; N, 3.2. $\mathrm{C}_{25} \mathrm{H}_{20}$ AsNO requires $M+1$, 426.0840; C, 70.59; H, 4.74; N, 3.29\%).

Hydrolysis of $\mathbf{4}$ in acidic and neutral conditions

A solution of $\mathbf{4}(51 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (waterEtOH $10: 1 ; 5 \mathrm{~cm}^{3}$) was stirred at rt for 30 min . This mixture was neutralized with aq. NaHCO_{3}, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the mixture, the residue was separated by TLC
on SiO_{2} (AcOEt) to give $7(13 \mathrm{mg}, 89 \%)$ and $\mathrm{Ph}_{3} \mathrm{AsO}(32 \mathrm{mg}$, 83%).

A solution of $4(85 \mathrm{mg}, 0.2 \mathrm{mmol})$ in water-EtOH ($1: 1 ; 5$ cm^{3}) was stirred at rt for 4.5 h . Then the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the mixture, the residue was separated by TLC on SiO_{2} (AcOEt) to give 7 ($20 \mathrm{mg}, 83 \%$) and $\mathrm{Ph}_{3} \mathrm{AsO}$ ($50 \mathrm{mg}, 78 \%$).
${ }^{1}$ H NMR studies of (7-oxocyclohepta-1,3,5-trienylimino)triphenylpnictoranes 4, 5, and 6
A suspension of $7(29 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{NEt}_{3}(61 \mathrm{mg}, 0.6 \mathrm{mmol})$, and $\mathrm{Ph}_{3} \mathrm{AsBr}_{2}(112 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left(5 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 10 min to give a suspension of 4 . In a similar manner, suspensions of $7(29 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Bu}^{t} \mathrm{OK}$ ($67 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{Ph}_{3} \mathrm{SbCl}_{2}(102 \mathrm{mg}, 0.24 \mathrm{mmol})$ or $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}(123 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left(5 \mathrm{~cm}^{3}\right)$ were stirred for 5 min to make clean suspension of the product 5 or $\mathbf{6}$. The suspensions were filtered through glass wool quickly, the filtrate was introduced into an NMR tube under dry nitrogen atmosphere, and the ${ }^{1} \mathrm{H}$ NMR spectra of the solutions of $\mathbf{4}, \mathbf{5}$, and $\mathbf{6}$ were recorded using $\mathrm{Me}_{4} \mathrm{Si}$ as external standard. The results are summarized in Table 1.

Thermal reaction of the bismuthorane 6

A solution of $7(30 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Bu} \mathrm{u}^{\prime} \mathrm{OK}(50 \mathrm{mg}, 0.5 \mathrm{mmol})$, and $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}(128 \mathrm{mg}, 0.25 \mathrm{mmol})$ in benzene ($2 \mathrm{~cm}^{3}$) was stirred at rt for 5 min . The reaction mixture was heated under reflux for 1 h . After evaporation of the mixture, the residue was separated by column chromatography on SiO_{2} (hexane-AcOEt $5: 1)$ to give $\mathrm{Ph}_{3} \mathrm{Bi}(92 \mathrm{mg}, 84 \%$ base on 7).

Reaction of isolated 4 with carbon disulfide 8a

A solution of 4 ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in carbon disulfide ($8 \mathrm{~cm}^{3}$) was heated at $100^{\circ} \mathrm{C}$ in an autoclave for 2 days. After evaporation of the mixture, the residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 1}(30 \mathrm{mg}, 92 \%)$ (Table 2, Entry 2).

Reactions of isolated 4 with heterocumulenes $\mathbf{8 b}$,c

A solution of $\mathbf{4}(64 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathbf{8 b}, \mathbf{c}$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$ was heated under reflux. After evaporation of the mixture, the residue was purified by TLC on $\mathrm{SiO}_{2}(\mathrm{AcOEt})$ to give the products, $\mathbf{1 2}$ and $\mathbf{1 4}$ (Table 2, Entries 6 and 11).

In the reaction with carbodiimide 8 c , a solution of phenyl isocyanate 8d ($179 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{AsO}(10 \mathrm{mg}, 0.03$ mmol) in benzene ($1 \mathrm{~cm}^{3}$) was heated under reflux for 2 h . The generation of $\mathbf{8 c}$ was confirmed by its IR spectrum. This solution was subsequently used for the reaction with $\mathbf{4}$ as described above.

Reaction of isolated 4 with $8 d$ at high temperature

A solution of 4 ($64 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathbf{8 d}$ ($179 \mathrm{mg}, 1.5 \mathrm{mmol}$) in xylenes $\left(3 \mathrm{~cm}^{3}\right)$ was heated under reflux for 25 h . After evaporation of the mixture, the residue was separated by TLC on SiO_{2} (AcOEt) to give the products, 12 and $\mathbf{1 4}$ (Table 2, Entry 19).

For N,1-diphenylcycloheptaimidazol-2(1 H)-imine 14: dark red prisms, mp $140-142{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) 6.66 ($1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{H} 8$), 6.91 ($1 \mathrm{H}, \mathrm{dd}, J 10.8,9.8, \mathrm{H} 6$), 7.02 (1 H $\mathrm{m}, \mathrm{Ph}), 7.19$ ($1 \mathrm{H}, \mathrm{dd}, 9.8,10.0, \mathrm{H} 7$), $7.31(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.44(1 \mathrm{H}$, dd, $9.8,11.1, \mathrm{H} 5), 7.50(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ph}), 7.52(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ph})$, $7.60(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H} 4), 7.62(2 \mathrm{H}, \mathrm{dd}, J 7.5,7.8, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 110.2(\mathrm{C} 8), 122.7(\mathrm{Ph}), 123.3(\mathrm{Ph}), 127.1(\mathrm{C} 4), 127.9$ (C6), 128.1 (Ph), 128.5 (Ph), 128.9 (Ph), 129.8 (Ph), 134.6 (quart), 136.2 (C7), 138.7 (C5), 149.1 (quart), 152.2 (quart), 159.3 (quart), 165.8 (quart); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1634,1580$ $1528,1493,1475,1445,1388 ; \lambda_{\text {max }}(\mathrm{MeCN}) / \mathrm{nm}\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$
$\left.\mathrm{cm}^{-1}\right) 266$ (4.64), 422 (4.39); m/z 297 ($\mathrm{M}^{+}, 72 \%$), 77 (100) (Found $\mathrm{M}^{+}+1,298.1307 ; \mathrm{C}, 80.8 ; \mathrm{H}, 5.0 ; \mathrm{N}, 14.1 . \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3}$ requires $M+1,298.1344 ; \mathrm{C}, 80.78 ; \mathrm{H}, 5.08 ; \mathrm{N}, 14.13 \%$).

Reaction of $\mathbf{2 H}$-cycloheptaoxazol-2-one 16 with $\mathrm{Ph}_{3} \mathrm{AsO}$ to give 4

A solution of $\mathbf{1 6}(22 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{AsO}(49 \mathrm{mg}, 0.15$ mmol) in benzene ($2 \mathrm{~cm}^{3}$) was heated under reflux for 15 h . After evaporation of the mixture, the residue was monitored by ${ }^{1} \mathrm{H}$ NMR to contain 4 and 7 in the ratio $7: 4$. The residue was then separated by TLC on SiO_{2} (AcOEt) to give 7 ($16 \mathrm{mg}, 89 \%$; $R_{\mathrm{f}}=0.5$). The base line on the TLC plates was further developed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH} 10: 1$ to give $\mathrm{Ph}_{3} \mathrm{AsO}(47 \mathrm{mg}$, $96 \% ; R_{\mathrm{f}}=0.7$).

In situ preparation of 4 and reactions with heterocumulenes $8 \mathrm{~b}-\mathrm{d}$
To a stirred solution of $\mathrm{Ph}_{3} \mathrm{As}(153 \mathrm{mg}, 0.5 \mathrm{mmol})$ in benzene $\left(5 \mathrm{~cm}^{3}\right)$ was added bromine ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the mixture was stirred for 5 min at room temperature. To this mixture were added $7(61 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(111 \mathrm{mg}, 1.1 \mathrm{mmol})$ and the mixture was stirred for another 30 min . To this solution was added a heterocumulene 8 , and the mixture was heated for the period indicated in Table 2. The reaction mixture was concentrated and the resulting residue was separated by TLC on SiO_{2} (AcOEt) to give the products, 12, 14, and $\mathbf{1 6}$ (Table 2, Entries 7, 12 , and 16).
In the reaction with diphenylcarbodiimide 8c, a solution of $\mathbf{8 d}(596 \mathrm{mg}, 5.0 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{AsO}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ in benzene ($3 \mathrm{~cm}^{3}$) was heated under reflux for 2 h . The generation of 8 c was confirmed by its IR spectrum. This solution was subsequently used for the reaction with a solution of $\mathbf{4}$ prepared above.

Reaction of the phosphorane 3 with the carbodiimide 8c

A solution of $\mathbf{8 d}(357 \mathrm{mg}, 3 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{AsO}(10 \mathrm{mg}, 0.03$ mmol) in xylenes ($5 \mathrm{~cm}^{3}$) was heated at $90^{\circ} \mathrm{C}$ for 2 h . To this reaction mixture was added the phosphorane 3 ($114 \mathrm{mg}, 0.3$ mmol), and the mixture was heated under reflux for 7 h . After evaporation of the mixture, the residue was separated by TLC on $\mathrm{SiO}_{2}(\mathrm{AcOEt})$ to give the products, 12 and $\mathbf{1 4}$ (Table 2, Entry 10).

In situ preparation of 5 and reactions with heterocumulenes 8a-d

To a stirred solution of $\mathrm{Ph}_{3} \mathrm{SbCl}_{2}(212 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 7 (61 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in benzene ($3 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}^{t} \mathrm{OK}(112 \mathrm{mg}$, 1.0 mmol), and the mixture was stirred for 30 min at rt . To this solution was added a heterocumulene $\mathbf{8}$ and the mixture was heated under reflux for the period indicated in Table 2. After evaporation of the mixture, the resulting residue was separated by TLC on $\mathrm{SiO}_{2}(\mathrm{AcOEt})$ to give the products, 11, 12, 14, and 16 (Table 2, Entries 3, 8, 13, and 17).
In the reaction with diphenylcarbodiimide $\mathbf{8 c}$, a solution of $\mathbf{8 d}(596 \mathrm{mg}, 5.0 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{AsO}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ in benzene ($3 \mathrm{~cm}^{3}$) was heated under reflux for 2 h . The generation of 8c was confirmed by its IR spectrum. This solution was subsequently used for the reaction with a solution of 5 prepared above.

In situ generation of $\mathbf{6}$ and reactions with heterocumulenes 8a-d

To a stirred solution of $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}(256 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 7 ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) in benzene ($3 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}^{t} \mathrm{OK}$ (112 $\mathrm{mg}, 1.0 \mathrm{mmol}$), and the mixture was stirred for 5 min at rt . To this solution was added a substrate $\mathbf{8}$, and the mixture was stirred for the period indicated in Table 2. After the mixture was filtered through Celite, the filtrate was concentrated and the resulting residue was separated by TLC on $\mathrm{SiO}_{2}(\mathrm{AcOEt})$ to give the products, 11, 12, 14, and $\mathbf{1 6}$ (Table 2, Entries 4, 9, 14, and 18).

In the reaction with the carbodiimide $\mathbf{8 c}$, a solution of $\mathbf{8 d}$ ($596 \mathrm{mg}, 5.0 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{AsO}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$ was heated under reflux for 2 h . The generation of $\mathbf{8 c}$ was confirmed by its IR spectrum. This solution was subsequently used for the reaction with a solution of $\mathbf{6}$ prepared above.

Reaction of 4 with DMAD 17

A solution of $\mathbf{4}(64 \mathrm{mg}, 0.15 \mathrm{mmol})$ and DMAD $17(101 \mathrm{mg}$, 0.75 mmol) in bromobenzene ($3 \mathrm{~cm}^{3}$) was heated under reflux for 20 h . After evaporation of the mixture, the residue was purified by TLC on SiO_{2} (AcOEt) to give 23 ($35 \mathrm{mg}, 60 \%$), which is identical with the authentic specimen (Table 2, Entry 21).

In situ preparation of 5 and reaction with DMAD 17

To a stirred solution of $\mathrm{Ph}_{3} \mathrm{SbCl}_{2}(212 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 7 ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) in bromobenzene ($3 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}^{{ }^{\prime} \mathrm{OK}}$ $(112 \mathrm{mg}, 1.0 \mathrm{mmol})$ and the mixture was stirred for 30 min at rt . To this solution was added a solution of DMAD $17(711 \mathrm{mg}$, $5 \mathrm{mmol})$ in bromobenzene $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was heated under reflux for 1 h . The reaction mixture was then filtered through Celite, the filtrated was concentrated, and the residue was purified by TLC on SiO_{2} (hexane-AcOEt $1: 2$) to give $\mathbf{2 3}$ (Table 2, Entry 22).

Crystal structure determination of $\mathbf{4} \ddagger$

Single crystal of $\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ON}=\mathrm{AsPh}_{3}\right] 4$ were recrystallised from AcOEt.

Crystal data. $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{AsNO}, \quad M=425.37$, orthorhombic, $a=25.5308(0), b=28.5381(0), c=10.7821(0) \AA, V=7855.86(0)$ $\AA^{3}, T=298 \mathrm{~K}$, space group Pcnb (no. 60), $Z=16, \mu(\mathrm{Cu}-$ $\mathrm{K} a)=2.4413 \mathrm{~mm}^{-1}, 8598$ reflections measured, 7190 unique $\left(R_{\mathrm{int}}=0.019\right)$. The final $R\left(F^{2}\right)$ and $w R\left(F^{2}\right)$ were 0.067 and 0.080 for 6515 observed reflections $\left[F^{2}>2 \sigma\left(F^{2}\right)\right.$] used in all calculations. ${ }^{33}$

Acknowledgements

Financial support from Waseda University Grants for Special Research Projects is gratefully acknowledged. We also thank the Materials Characterization Central Laboratory, Waseda University, for technical assistance with spectral data, elemental analyses, and X-ray structure analysis.
\ddagger CCDC reference number 162394. See http://www.rsc.org/suppdata/ $\mathrm{p} 1 / \mathrm{b} 1 / \mathrm{b} 103098 \mathrm{c}$ for crystallographic files in .cif or other electronic format.

References

1 A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, New York, Chichester, Brisbane, Toronto and Singapore, 1993.
2 D. Lloyd, I. Gosney and R. A. Ormiston, Chem. Soc. Rev., 1987, 16, 45; D. Lloyd and I. Gosney, in The Chemistry of Organic Arsenic, Antimony and Bismuth Compound, ed. S. Patai, Wiley, Chichester, New York, Brisbane, Toronto and Singapore, 1994, pp. 657-693.

3 N. C. Norman, Chemistry of Arsenic, Antimony and Bismuth, Blackie Academic \& Professional, London, Weinheim, New York, Tokyo, Melbourne and Madras, 1998; H. Suzuki and Y. Matano, Organobismuth Chemistry, Elsevier, Amsterdam, London, New York, Oxford, Paris, Shannon and Tokyo, 2001
4 R. Appel and D. Wagner, Angew. Chem., 1960, 72, 209.
5 G. Wittig and D. Hellwinkel, Chem. Ber., 1964, 97, 789
6 H. Suzuki and T. Ikegami, J. Chem. Res. (S), 1996, 24.
7 H. Suzuki, C. Nakaya, Y. Matano and T. Ogawa, Chem. Lett., 1991, 105.

8 S. V. Pasenok, N. V. Kirij, Y. L. Yagupolskii, D. Naumann and W. Tyrra, J. Fluorine Chem., 1993, 63, 179.

9 T. Ikegami and H. Suzuki, Organometallics, 1998, 17, 1013.
10 Y. Matano, H. Nomura, M. Shiro and H. Suzuki, Organometallics, 1999, 18, 2580.
11 Yu. G. Gololobov and L. F. Kasukhin, Tetrahedron, 1992, 48, 1353
12 S. Eguchi, Y. Matsushita and K. Yamashita, Org. Prep. Proced. Int., 1992, 24, 209.
13 M. Nitta, Rev. Heteroatom. Chem., 1993, 9, 87 and references cited therein.
14 P. Molina and M. J. Vilaplana, Synthesis, 1994, 1197.
15 H. Wamhoff, G. Richardt and M. Stölben, Adv. Heterocycl. Chem., 1995, 64, 159.
16 H. Yamamoto, M. Ohnuma and M. Nitta, J. Chem. Res. (S), 1999, 173; (M), 1999, 901
17 Yu. G. Gololobov, I. N. Zhmurova and L. F. Kasukhin, Tetrahedron, 1981, 37, 437.
18 A. D. Beveridge and G. S. Harris, J. Chem. Soc. (A), 1964, 6076.
19 R. O. Day, J. M. Holmes, A. C. Sau, J. R. Devillers, R. R. Holmes and J. A. Deiters, J. Am. Chem. Soc., 1982, 104, 2127; R. H. Fish and R. S. Tannous, Organometallics, 1982, 1, 1238; C. A. Poutasse, R. O Day, J. M. Holmes and R. R. Holmes, Organometallics, 1985, 4, 708; R. R. Holmes, R. O. Day and A. C. Sau, Organometallics, 1985, 4, 714.

20 A. Bondi, J. Phys. Chem., 1964, 68, 441.
21 H. W. Roesky, M. Witt, W. Clegg, W. Isenberg, M. Noltemeyer and G. M. Sheldrick, Angew. Chem., Int. Ed. Engl., 1980, 19, 943; M. Witt, H. W. Roesky, M. Noltemeyer, W. Clegg, M. Schmidt and G. M. Sheldrick, Angew. Chem., Int. Ed. Engl., 1981, 20, 974; R. Bohra, H. W. Roesky, J. Lucas, M. Noltemeyer and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1983, 1011; H. W. Roesky, N. Bertel, F. Edelmann, M. Noltemeyer and G. M. Sheldrick, Z. Naturforsch., Teil B, 1988, 43, 72; K. Bailey, I. Gosney, R. O. Gould, D. Lloyd and P. Taylor, J. Chem. Res. (S), 1988, 386; (M), 1988, 2950.
22 J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, New York, Chichester, Brisbane, Toronto and Singapore, 4th edn., 1992, p. 21, Table 1.5.
23 A. Krebs and B. Schrader, Justus Liebigs Ann. Chem., 1967, 709, 46.
24 M. J. Barrow, O. S. Mills and G. Filippini, J. Chem. Soc., Chem. Commun., 1973, 66.
25 A. D. Beverridge, G. S. Harris and F. Inglis, J. Chem. Soc. (A), 1966, 520.

26 G. Wittig and K. Clauss, Justus Liebigs Ann. Chem., 1952, 578, 136.
27 J. J. Monagle, J. Org. Chem., 1962, 27, 3851; P. Frøyen, Acta Chem. Scand., 1969, 23, 2935.
28 I. Ueda, M. Matsuo, K. Taniguchi, S. Shigenaga and T. Ogawara, Jpn. Kokai Tokkyo Koho, JP 64 03,172 [89 03,172] (Chem. Abstr., 1989, 111, 57734g).
29 I. Kawamoto, Y. Sugimura, N. Soma and Y. Kishida, Chem. Lett., 1972, 931.
30 G. W. Brown, R. C. Cookson and I. D. R. Stevens, Tetrahedron Lett., 1964, 1263; J. Barluenga, F. Lopez and F. Palacios, J. Chem. Soc., Perkin Trans. 1, 1989, 2273.
31 P. Frøyen, Acta Chem. Scand., 1973, 27, 141.
32 N. Abe, Y. Tanaka and T. Nishiwaki, J. Chem. Soc., Perkin Trans. 1, 1978, 429; N. Abe and T. Nishiwaki, Bull. Chem. Soc. Jpn., 1980, 53, 1406.

33 CRYSTAN, Crystal Structure Analysis Package, MAC Science Co., Ltd., Yokohama, Kanagawa 222-0033, Japan.

